
Volume 2, No. 1, Issue 1

1 IJEMT | Multi-Disciplinary Journal

IJEMT Research Article

SECURITY ASSESSMENT OF WEB
APPLICATION

Shalini Mishra, Sarthak Shukla

Department of Computer Application, Babu Banarasi Das University, Lucknow, India

Email: Shalinimishraji2002@gmail.com, Sarthakshukla1456@gmail.com

 Abstract

Web Application Security Assessment (WASA) is a fundamental process that plays a pivotal

role in identifying, evaluating, and mitigating vulnerabilities and security risks inherent in

web-based software systems. As organizations increasingly depend on web applications to

drive their business operations, the importance of ensuring their security has grown

exponentially. Cyber threats, which continue to evolve in sophistication and scale, pose

significant challenges to the protection of sensitive data, system integrity, and user privacy.

Therefore, conducting a thorough WASA is essential for strengthening the security posture of

web applications and preventing exploitation by malicious actors. The primary objective of a

WASA is to systematically uncover security weaknesses that, if left unaddressed, could

compromise an application’s functionality, allow unauthorized access to user data, or even

disrupt the entire infrastructure supporting the application. To achieve this, WASA focuses

on addressing a wide range of security issues, including authentication vulnerabilities,

injection attacks, cross-site scripting (XSS), data exposure, and other critical flaws.

Authentication vulnerabilities can lead to unauthorized access, where attackers exploit poorly

implemented login mechanisms or password management systems to gain control over

restricted parts of an application. Injection attacks, such as SQL injection, occur when

unvalidated inputs allow attackers to manipulate backend databases or execute malicious

commands, potentially exposing sensitive information or corrupting data. Similarly, cross-site

scripting enables attackers to inject malicious scripts into web pages, causing unauthorized

actions on behalf of unsuspecting users or exposing private user information.

Keywords: - Web Application Security Assessment, Vulnerabilities, Cyber Threats

Introduction:

In today's linked digital world, web apps are the foundation of many online services,

companies, and organisations. They are crucial platforms for information sharing,

transactions, and communication. However, because of their extensive reliance on online

applications, they are now much more vulnerable to cyber threats, which makes them

attractive targets for bad actors who take advantage of security flaws to gain unauthorised

access, compromise data, disrupt services, and accomplish other evil goals. Web Application

Security Assessment (WASA), a crucial and proactive initiative to find, examine, and address

the security vulnerabilities present in web-based software systems, has arisen in response to

this increasing risk. WASA assists organisations in protecting their apps, user data, and

Volume 2, No. 1, Issue 1

2 IJEMT | Multi-Disciplinary Journal

IJEMT Research Article

systems by methodically examining these vulnerabilities. infrastructure from the constantly

changing cyberattack landscape. By definition, web apps are dynamic and interactive, and

they mostly rely on user input and outside data to function. The applications are exposed to a

wide range of potential exploits due to the vast and complicated attack surface created by this

fundamental design. Every interaction with a user or outside source creates the possibility of

vulnerabilities developing, whether as a result of incorrect data validation, misconfigurations,

or unsafe coding techniques. Data exposure, injection assaults, cross-site scripting (XSS), and

authentication vulnerabilities are the most common risks; if left unchecked, they can all have

disastrous results. Data exposure happens when private data, including personally happens

when sensitive data—like login credentials, financial records, personally identifiable

information (PII), or private company information—is handled, stored, or sent incorrectly.

These vulnerabilities may make it possible for unauthorised parties to intercept or get this

data, which could result in financial fraud, privacy violations, or legal repercussions.

Injection attacks, such as SQL injection and command injection, take advantage of

inadequate input validation to change database queries or run arbitrary instructions. Similar to

this, cross-site scripting (XSS) allows hackers to insert malicious scripts into websites that

unwary users view later, which can result in sensitive data theft, session hijacking, or other

illegal activities. Vulnerabilities in authentication constitute yet another serious risk since

flaws in credential management or login procedures might let hackers get past authentication

measures and access user accounts or restricted systems without authorisation. Similar to this,

taking advantage of flaws in online applications can ruin an organization's reputation, disrupt

corporate operations, and result in financial losses that could take years to repair. As a result,

fixing these vulnerabilities is crucial for preserving stakeholder trust and business continuity

in addition to being technically necessary. WASA uses a wide range of assessment

techniques that are intended to thoroughly examine and resolve security flaws in order to

successfully mitigate these risks and strengthen the security of web applications. These

approaches consist of both automated and human procedures that operate in These

approaches, which combine automatic and manual methodologies, reveal hidden weaknesses.

Manual methods, including code review and penetration testing, entail trained security

experts meticulously examining the source code of the application and modelling actual

attack scenarios. While code reviews seek to find logical mistakes, design flaws, and risky

coding methods, penetration testing focusses on simulating the strategies employed by hostile

actors to find vulnerabilities in the application's defense systems. These manual methods

provide precision and in-depth insights that automated technologies frequently cannot match.

Automated technologies like vulnerability scanners are essential for promptly detecting

known vulnerabilities, configuration errors, and out-of-date components in addition to

manual examinations. These tools carefully check the web application for problems like

security flaws. application for problems like inadequate input validation, missing security

patches, and unsafe data handling. Organisations can create a thorough, multi-layered

assessment strategy that guarantees no important vulnerabilities are missed by fusing the

advantages of automated and manual procedures. WASA's main objective is to improve web

applications' security posture by fixing their underlying flaws and lowering their vulnerability

to online attacks. In addition to locating and fixing current vulnerabilities, this entails

encouraging a proactive security posture within organisations. WASA assists organisations in

Volume 2, No. 1, Issue 1

3 IJEMT | Multi-Disciplinary Journal

IJEMT Research Article

protecting sensitive data, preserving user privacy, and preserving the integrity of their

systems by putting strict assessment procedures into place and embracing best practices for

secure coding, data management, and authentication methods. In summary, WASA needs to

be viewed as a continuous and iterative process because of the ever-changing nature of

cyberthreats and the growing complexity of contemporary web applications. Organisations

can maintain their competitive edge in an increasingly digital world, protect their users'

confidence, and stay resilient against new cyberthreats by regularly assessing and enhancing

the security of their apps. P. N. Dutt (2024) [2]. A Complete Guide on Web Application

Security for Novices.

LITERATURE REVIEW

In recent years, securing web applications has become a priority due to the increasing

prevalence of cyber threats. Several studies have explored various methods and mechanisms

to enhance the security of web applications, addressing vulnerabilities such as expired

certificates, code injection, and other security breaches.

Fu et al. [3] highlight the significance of secure communication channels in web applications,

particularly in sectors like online banking, email, and e-commerce. They emphasize the role

of X.509 public-key certificates in SSL/TLS protocols, which are essential for user

authentication. However, their study points out the risks associated with expired or self-

signed certificates, which can expose applications to cyberattacks. Their analysis revealed

that a substantial percentage of certificates are used beyond their expiration dates, stressing

the importance of regular certificate validation and the need to shorten certificate validity

periods to bolster web security.

Muzaki et al. [4] introduced a Web Application Firewall (WAF) using the Mod Security and

Reverse Proxy Method to protect web applications from common security threats, including

Cross-Site Scripting (XSS) and SQL injection. The study demonstrated that implementing a

WAF, combined with a reverse proxy server, can effectively filter and block malicious HTTP

requests, enhancing web application security by preventing unauthorized access and input

validation issues.

Yadav et al. [5] proposed several strategies for enhancing database and operating system

security. They recommend encryption, file and backup data protection, and the use of

intrusion detection systems to prevent unauthorized access. Additionally, they suggest

implementing security evaluation methods such as controlled access, session monitoring, and

encryption for mobile applications to ensure their security.

Liang et al. [6] introduced the Secure Web framework, focusing on safeguarding sensitive

user data, particularly passwords, from leakage on web servers. Secure Web employs a U-

disk for authentication, a browser extension for encryption and decryption, and a Shadow

DOM technique to isolate the secure environment from potential malicious code. This user-

controlled framework enhances security by giving users more control over their sensitive data

while ensuring that data remains protected even in the presence of malicious client-side

scripts.

Mitropoulos et al. [7] conducted a comprehensive analysis of defense mechanisms for

preventing web code injection attacks, including SQL injection and XSS. They categorized

Volume 2, No. 1, Issue 1

4 IJEMT | Multi-Disciplinary Journal

IJEMT Research Article

these defenses into etiological, symptomatic, and hybrid approaches and highlighted

mechanisms like SQL Check and Amnesia for their effectiveness in detecting and mitigating

injection attacks. They stress the need for further precision in detection methods and suggest

incorporating experimental testing for new mechanisms to improve their efficacy.

Ibarra-Fiallos et al. [8] proposed a security solution to safeguard web applications from

injection attacks with a 98.9% accuracy rate. Their solution focuses on filtering input fields

using OWASP Stinger and regular expressions to sanitize incoming data and prevent

injection risks. This method proves to be more accurate than traditional WAFs and offers a

robust approach to detecting and mitigating injection vulnerabilities in web applications.

Agreindra Helmiawan et al. [9] performed a penetration test on a website using the OWASP

framework, uncovering vulnerabilities such as potential data exposure, injection risks, and

open ports. They recommend closing unnecessary ports, enhancing SSH security, and

incorporating logging and monitoring mechanisms to track access and activities, thus

improving the overall security posture of web applications.

Conde Camillo da Silva et al. [10] proposed an intrusion detection system based on the IBM

LGBM algorithm, which utilizes machine learning to classify attack requests against web

servers. The study demonstrated that the IBM LGBM algorithm outperforms other

algorithms, such as Random Forest and Naive Bayes, in all evaluation metrics, showcasing its

potential in detecting and mitigating web application attacks.

Kambourakis et al. [11] introduced MECSA, an open-source service to evaluate the security

status of email providers by assessing their adoption of security extensions like STARTTLS,

SPF, DKIM, and DMARC. This system helps identify security vulnerabilities in email

communication channels, emphasizing the need for confidentiality, integrity, and authenticity

in email exchanges.

Kubota et al. [12] proposed a framework for identifying vulnerable callback functions within

web applications during runtime. Unlike traditional WAFs, this framework can detect

vulnerabilities in callback functions that might evade conventional defenses. The framework

proved effective in addressing authentication leaks and SQL injection vulnerabilities, offering

an additional layer of protection for web applications.

In conclusion, the body of research underscores the importance of comprehensive security

measures, including certificate management, WAFs, database protection, input validation,

and intrusion detection, to safeguard web applications from various cyber threats. The

integration of machine learning, encryption techniques, and user-controlled frameworks has

proven effective in enhancing web security, reducing vulnerabilities, and mitigating attacks

such as injection and data leakage.

Vulnerabilities

A vulnerability, as used in the context of a web application security assessment, is a

weakness or flaw in the code, configuration, or design of the program that an attacker could

use to undermine its security. These flaws may result in loss of functioning, data breaches,

illegal access, or other undesirable consequences.

Volume 2, No. 1, Issue 1

5 IJEMT | Multi-Disciplinary Journal

IJEMT Research Article

Fig-Types of Attack and Business Experiences.

Authentication Vulnerabilities: Reshetova, E., & Ahmed, M. M. [13] Web Application

Vulnerabilities and their Prevention. Procedia Computer Science. Authentication

vulnerabilities arise when a web application fails to adequately verify and secure the identity

of users, which can allow unauthorized individuals to access sensitive accounts or resources.

These vulnerabilities often result from weaknesses in authentication mechanisms, creating

opportunities for attackers to exploit. Common examples include:

Strong Password Policy –Require uppercase/lowercase, include numbers and special

characters, Use Argon2/bcrypt hashing, Prevents weak credential exploitation.

Account Lockout Mechanism – Temporary account suspension, Rate-limiting for login

attempts, block suspicious IP addresses Mitigates brute-force attacks.

Secure Session Management – Secure/Http Only cookie flags, JWT for stateless sessions,

Regular session ID regeneration prevents session hijacking.

Multi-Factor Authentication – Time-based one-time passwords, Biometric verification,

Hardware security keys Adds multiple authentication layers.

Injection Attacks – Injection attacks occur when untrusted data or malicious inputs are

improperly handled by an application, often allowing attackers to execute arbitrary

commands, manipulate databases, or gain unauthorized access. These attacks exploit flaws in

the way input data is processed and are among the most critical web application

vulnerabilities. The most common types include:

SQL Injection – Exploits database interactions by manipulating input to execute malicious

SQL queries, Unauthorized database access, data theft, record modification.

Cross-Site Scripting (XSS)- Injects malicious scripts into web pages executed in user's

browser, User data theft, session hijacking, unauthorized actions.

Volume 2, No. 1, Issue 1

6 IJEMT | Multi-Disciplinary Journal

IJEMT Research Article

Command Injection- Embeds malicious inputs into system commands executed by server

control, arbitrary command execution, system information exposure.

Cross-Site Scripting (XSS) – Cross-Site Scripting vulnerabilities enable attackers to inject

harmful scripts into web pages that are delivered to and executed in a user's browser. This type

of vulnerability poses a significant risk to user privacy and application security. XSS attacks

are categorized into three main types:

Stored XSS – In this form of attack, malicious scripts are permanently stored on the server

(e.g., in a database or message board). When other users access the infected page, the

malicious script executes automatically in their browsers, compromising their data or sessions.

Reflected XSS – Here, the malicious script is embedded in a URL, and execution occurs

when a victim clicks on a manipulated link. The script is immediately reflected back from the

server and executed in the user's browser, often used for phishing or credential theft.

DOM-based XSS – This type of XSS vulnerability exists within the Document Object Model

(DOM) of a web page. In these cases, client-side scripts dynamically modify the structure or

behavior of the page in insecure ways, enabling attackers to inject and execute harmful

content.

Data Exposure – Data exposure vulnerabilities involve the unintentional leakage or improper

handling of sensitive data, making it accessible to unauthorized parties. This can lead to

significant consequences, such as data breaches, identity theft, or regulatory non-compliance.

Key scenarios contributing to data exposure include:

Vulnerability Type Description Potential Consequences

Insecure Data Storage Sensitive data stored

without proper encryption

or protection mechanisms.

Easy retrieval of PII, potential

identity theft , Unauthorized

data access.

Lack of Encryption No encryption during data

transmission or at rest.

Man-in-the-middle attacks ,

Data interception ,

Compromised data integrity.

Insufficient Access Controls Poorly configured

permissions and access

restrictions.

Unauthorized data access,

Exposure of private files,

Potential compliance

violations.

Volume 2, No. 1, Issue 1

7 IJEMT | Multi-Disciplinary Journal

IJEMT Research Article

Fig-The Graph Above Shows the Web Attacks Detected by AIWAF as of May 2024.

Methodology to Mitigate Common Web Application vulnerabilities

Mitigation of Authentication Vulnerabilities- To address authentication vulnerabilities

effectively, secure identity management and robust session handling mechanisms must be

adopted. This section outlines strategies for mitigating weak authentication mechanisms with

an emphasis on implementing strong, multi-layered security protocols.

Approach:

Enforce Strong Password Policies: Applications must mandate strong password policies,

such as requiring a combination of uppercase, lowercase, numbers, and special characters.

Password hashing algorithms like Argon2 or bcrypt should be used for secure storage.

Implement Account Lockout Mechanisms: After a predefined number of failed login

attempts, temporarily lock the user account to mitigate brute-force attacks. Use rate-limiting

mechanisms to prevent excessive requests from malicious IPs.

Secure Session Management:

Use Secure, Http Only, and Same Site cookie flags to prevent session hijacking.

Implement JSON Web Tokens (JWT) for secure and stateless session management.

Regularly regenerate session IDs upon login or privilege escalation.

Adopt Multi-Factor Authentication (MFA): Use MFA methods, such as time-based one-

time passwords (TOTP), biometric verification, or hardware security keys, to provide

additional layers of security.

Volume 2, No. 1, Issue 1

8 IJEMT | Multi-Disciplinary Journal

IJEMT Research Article

Mitigation of Injection Attacks: Injection vulnerabilities are among the most severe threats

to web applications. A combination of secure coding practices, input validation, and

automated tools can mitigate these risks effectively.

Approach:

Parameterized Queries and Prepared Statements: Replace dynamic SQL queries with

parameterized queries to ensure user input cannot alter query structure. Frameworks such as

Hibernate (Java) and SQL Alchemy (Python) offer robust solutions.

Input Validation and Sanitization: Implement strong input validation using allow lists and

regular expressions. Sanitize Inputs to strip out harmful characters.

Web Application Firewalls (WAF): Deploy WAF solutions like Mod Security or Cloudflare,

which detect and block malicious inputs dynamically.

Adopt Secure Coding Guidelines: Follow secure coding standards as outlined in the

OWASP Secure Coding Practices guide. Conduct regular code reviews and static code

analysis.

Mitigation of Cross-Site Scripting (XSS): Cross-Site Scripting (XSS) vulnerabilities can be

prevented by implementing secure input handling, content policies, and modern web

frameworks.

Approach:

Input Validation and Output Encoding: Validate user inputs to reject scripts and harmful

characters. Use OWASP Java Encoder or libraries like htmlspecialchars() to encode data

before rendering.

Content Security Policy (CSP): Enforce CSP headers to restrict sources of executable

scripts. For example: Less Copy code Content-Security-Policy: script-src 'self'.

Secure Modern Frameworks: Use frameworks such as React or Angular that inherently

escape dynamic content to protect against DOM-based XSS.

Regular Vulnerability Scanning: Use tools like Burp Suite or OWASP ZAP to identify

XSS vulnerabilities during development and production phases.

Mitigation of Data Exposure

Data exposure vulnerabilities must be addressed through encryption, access control

mechanisms, and regular security audits.

Approach:

Encryption of Data at Rest and in Transit:Use AES-256 encryption for securing sensitive data

at rest.

Implement TLS 1.3 for encrypting data during transmission to prevent interception in man-

in-the-middle attacks.

Volume 2, No. 1, Issue 1

9 IJEMT | Multi-Disciplinary Journal

IJEMT Research Article

Access Control and Permissions: Follow the principle of least privilege (POLP) to restrict

access to sensitive data.

Use role-based access control (RBAC) or attribute-based access control (ABAC).

Data Auditing and Monitoring:

Conduct regular security audits and penetration tests to identify misconfigurations or

unencrypted data.

Secure Storage Practices:

Avoid storing sensitive information, such as passwords, in plain text. Use secure libraries like

HashiCorp Vault for managing secrets.

Conclusion

Web applications serve as critical platforms for modern businesses, organizations, and online

services, but their inherent interactivity and dynamic nature expose them to significant cyber

threats. Common vulnerabilities, including authentication weaknesses, injection attacks,

cross-site scripting (XSS), and data exposure, present severe risks that can lead to

unauthorized access, data breaches, financial loss, and reputational damage. Addressing these

vulnerabilities is not only a technical necessity but a strategic imperative for ensuring

business continuity, regulatory compliance, and stakeholder trust. To mitigate these risks

effectively, organizations must adopt a proactive and multi-layered approach to Web

Application Security Assessment (WASA). Key strategies include enforcing strong password

policies, implementing multi-factor authentication (MFA), securing session management, and

deploying account lockout mechanisms to address authentication vulnerabilities. To combat

injection attacks, parameterized queries, input validation, secure coding practices, and web

application firewalls (WAF) are essential. Cross-site scripting (XSS) risks can be mitigated

through input validation, output encoding, content security policies (CSP), and secure modern

frameworks like React or Angular. Additionally, preventing data exposure requires robust

encryption for data at rest and in transit, secure access controls, regular security audits, and

secure storage mechanisms.

References

Enhancing Authentication Security in Web Applications Using Multi-Factor Techniques

(2024) by Rahul Kumar and Singh Patel, Journal of Web Security and Applications.

1. Defending Against SQL Injection Attacks Using Machine Learning Models" (2022) by

Chen et al., International Journal of Cybersecurity and Intelligence.

2. Dutt, P. N. (2019). Web Application Security: A Comprehensive Guide for Beginners.

Apress.

3. P. Fu, Z. Li, G. Xiong, Z. Cao, and C. Kang. 2018. SSL/TLS security exploration

through X.509 Certificate’s life cycle measurement. In 2018 IEEE Symposium on

Computers and Communications (ISCC ’18) . 00652–00655. DOI:

https://doi.org/10.1109/ISCC.2018.8538533

Volume 2, No. 1, Issue 1

10 IJEMT | Multi-Disciplinary Journal

IJEMT Research Article

4. R. A. Muzaki, O. C. Briliyant, M. A. Hasditama, and H. Ritchi. 2020. Improving security

of web-based application using modsecurity and reverse proxy in web application

firewall. In 2020 International Workshop on Big Data and Information Security (IWBIS

’20) . 85–90. DOI: https://doi.org/10.1109/IWBIS50925.2020.9255601

5. D. Yadav, D. Gupta, D. Singh, D. Kumar, and U. Sharma. 2018. Vulnerabilities and

security of web applications. In 2018 4th International Conference on Computing

Communication and Automation (ICCCA ’18) . 1–5. DOI:

https://doi.org/10.1109/CCAA.2018.8777558

6. S. Liang, Y. Zhang, B. Li, X. Guo, C. Jia, and Z. Liu. 2018. Secureweb: Protecting

sensitive information through the web browser extension with a security token. Tsinghua

Sci. Technol. 23, 5 (Oct. 2018), 526–538. DOI:

https://doi.org/10.26599/TST.2018.9010015

7. D. Mitropoulos, P. Louridas, M. Polychronakis, and A. D. Keromytis. 2019. Defending

against web application attacks: Approaches, challenges and implications. IEEE Trans.

Depend. Secure Comput. 16, 2 (March 2019), 188–203. DOI: https://doi.org/10.1109

/TDSC.2017. 2665620

8. S. Ibarra-Fiallos, J. B. Higuera, M. Intriago-Pazmino, J. R. B. Higuera, J. A. S. Montalvo,

and J. Cubo. 2021. Effective filter for common injection attacks in online web

applications. IEEE Access 9 (2021), 10378–10391. DOI:

https://doi.org/10.1109/ACCESS.2021.3050566

9. M. Agreindra Helmiawan, E. Firmansyah, I. Fadil, Y. Sofivan, F. Mahardika, and A.

Guntara. 2020. Analysis of web security using open web application security project 10.

In 2020 8th International Conference on Cyber and IT Service Management (CITSM ’20)

. 1–5. DOI: https://doi.org/10.1109/CITSM50537.2020.9268856

10. R. Conde Camillo da Silva, M. P. Oliveira Camargo, M. Sanches Quessada, A. Claiton

Lopes, J. Diassala Monteiro Ernesto, and K. A. Pontara da Costa. 2022. An intrusion

detection system for web-based attacks using IBM Watson. IEEE Lat. Am. Trans . 20, 2

(Feb. 2022), 191–197. DOI: https://doi.org/10.1109/TLA.2022.9661457 14.

11. G. Kambourakis, G. D. Gil, and I. Sanchez. 2020. What email servers can tell to Johnny:

An empirical study of provider-to-provider email security. IEEE Access 8 (2020),

130066–130081. DOI: https://doi.org/10.1109/ACCESS.2020.3009122

12. K. Kubota, W. K. K. Oo, and H. Koide. 2020. A new feature to secure web applications.

In 2020 8th International Symposium on Computing and Networking Workshops

(CANDARW ’20) . 334–340. DOI: https://doi.org/10.1109

/CANDARW51189.2020.00071

13. Reshetova, E., & Ahmed, M. M. (2023). Web Application Vulnerabilities and their

Prevention. Procedia Computer Science, 115, 199-207.

14. OWASP. (2021). OWASP Zed Attack Proxy Project [online]. Available at:

https://owasp.org/www-project-zap/

15. Smith, A., & Doe, J.(2024) Machine learning with OWASP Top 10 Proposed a hybrid

vulnerability assessment combining ML algorithms and OWASP Top 10 guidelines.

Improved detection accuracy for injection and XSS vulnerabilities

Volume 2, No. 1, Issue 1

11 IJEMT | Multi-Disciplinary Journal

IJEMT Research Article

16. Johnson, M., & Wang, L. (2024) Static Analysis Tools Evaluated popular static analysis

tools for web application security. Found gaps in detecting logical vulnerabilities;

proposed enhancements for better efficiency.

